A number of system services, mainly for input and output, are available for use by your MIPS program. They are described in the table below.
MIPS register contents are not affected by a system call, except for result registers as specified in the table below.
li $v0, 1 # service 1 is print integer add $a0, $t0, $zero # load desired value into argument register $a0, using pseudo-op syscall
Service | Code in $v0 | Arguments | Result |
---|---|---|---|
print integer | 1 | $a0 = integer to print | |
print float | 2 | $f12 = float to print | |
print double | 3 | $f12 = double to print | |
print string | 4 | $a0 = address of null-terminated string to print | |
read integer | 5 | $v0 contains integer read | |
read float | 6 | $f0 contains float read | |
read double | 7 | $f0 contains double read | |
read string | 8 | $a0 = address of input buffer $a1 = maximum number of characters to read | See note below table |
sbrk (allocate heap memory) | 9 | $a0 = number of bytes to allocate | $v0 contains address of allocated memory |
exit (terminate execution) | 10 | ||
print character | 11 | $a0 = character to print | See note below table |
read character | 12 | $v0 contains character read | |
open file | 13 | $a0 = address of null-terminated string containing filename $a1 = flags $a2 = mode | $v0 contains file descriptor (negative if error). See note below table |
read from file | 14 | $a0 = file descriptor $a1 = address of input buffer $a2 = maximum number of characters to read | $v0 contains number of characters read (0 if end-of-file, negative if error). See note below table |
write to file | 15 | $a0 = file descriptor $a1 = address of output buffer $a2 = number of characters to write | $v0 contains number of characters written (negative if error). See note below table |
close file | 16 | $a0 = file descriptor | |
exit2 (terminate with value) | 17 | $a0 = termination result | See note below table |
Services 1 through 17 are compatible with the SPIM simulator, other than Open File (13) as described in the Notes below the table. Services 30 and higher are exclusive to MARS. | |||
time (system time) | 30 | $a0 = low order 32 bits of system time $a1 = high order 32 bits of system time. See note below table | |
MIDI out | 31 | $a0 = pitch (0-127) $a1 = duration in milliseconds $a2 = instrument (0-127) $a3 = volume (0-127) | Generate tone and return immediately. See note below table |
sleep | 32 | $a0 = the length of time to sleep in milliseconds. | Causes the MARS Java thread to sleep for (at least) the specified number of milliseconds. This timing will not be precise, as the Java implementation will add some overhead. |
MIDI out synchronous | 33 | $a0 = pitch (0-127) $a1 = duration in milliseconds $a2 = instrument (0-127) $a3 = volume (0-127) | Generate tone and return upon tone completion. See note below table |
print integer in hexadecimal | 34 | $a0 = integer to print | Displayed value is 8 hexadecimal digits, left-padding with zeroes if necessary. |
print integer in binary | 35 | $a0 = integer to print | Displayed value is 32 bits, left-padding with zeroes if necessary. |
print integer as unsigned | 36 | $a0 = integer to print | Displayed as unsigned decimal value. |
(not used) | 37-39 | ||
set seed | 40 | $a0 = i.d. of pseudorandom number generator (any int). $a1 = seed for corresponding pseudorandom number generator. | No values are returned. Sets the seed of the corresponding underlying Java pseudorandom number generator (java.util.Random). See note below table |
random int | 41 | $a0 = i.d. of pseudorandom number generator (any int). | $a0 contains the next pseudorandom, uniformly distributed int value from this random number generator's sequence. See note below table |
random int range | 42 | $a0 = i.d. of pseudorandom number generator (any int). $a1 = upper bound of range of returned values. | $a0 contains pseudorandom, uniformly distributed int value in the range 0 <= [int] < [upper bound], drawn from this random number generator's sequence. See note below table |
random float | 43 | $a0 = i.d. of pseudorandom number generator (any int). | $f0 contains the next pseudorandom, uniformly distributed float value in the range 0.0 <= f < 1.0 from this random number generator's sequence. See note below table |
random double | 44 | $a0 = i.d. of pseudorandom number generator (any int). | $f0 contains the next pseudorandom, uniformly distributed double value in the range 0.0 <= f < 1.0 from this random number generator's sequence. See note below table |
(not used) | 45-49 | ||
ConfirmDialog | 50 | $a0 = address of null-terminated string that is the message to user | $a0 contains value of user-chosen option 0: Yes 1: No 2: Cancel |
InputDialogInt | 51 | $a0 = address of null-terminated string that is the message to user | $a0 contains int read $a1 contains status value 0: OK status -1: input data cannot be correctly parsed -2: Cancel was chosen -3: OK was chosen but no data had been input into field |
InputDialogFloat | 52 | $a0 = address of null-terminated string that is the message to user | $f0 contains float read $a1 contains status value 0: OK status -1: input data cannot be correctly parsed -2: Cancel was chosen -3: OK was chosen but no data had been input into field |
InputDialogDouble | 53 | $a0 = address of null-terminated string that is the message to user | $f0 contains double read $a1 contains status value 0: OK status -1: input data cannot be correctly parsed -2: Cancel was chosen -3: OK was chosen but no data had been input into field |
InputDialogString | 54 | $a0 = address of null-terminated string that is the message to user $a1 = address of input buffer $a2 = maximum number of characters to read | See Service 8 note below table $a1 contains status value 0: OK status. Buffer contains the input string. -2: Cancel was chosen. No change to buffer. -3: OK was chosen but no data had been input into field. No change to buffer. -4: length of the input string exceeded the specified maximum. Buffer contains the maximum allowable input string plus a terminating null. |
MessageDialog | 55 | $a0 = address of null-terminated string that is the message to user $a1 = the type of message to be displayed: 0: error message, indicated by Error icon 1: information message, indicated by Information icon 2: warning message, indicated by Warning icon 3: question message, indicated by Question icon other: plain message (no icon displayed) | N/A |
MessageDialogInt | 56 | $a0 = address of null-terminated string that is an information-type message to user $a1 = int value to display in string form after the first string | N/A |
MessageDialogFloat | 57 | $a0 = address of null-terminated string that is an information-type message to user $f12 = float value to display in string form after the first string | N/A |
MessageDialogDouble | 58 | $a0 = address of null-terminated string that is an information-type message to user $f12 = double value to display in string form after the first string | N/A |
MessageDialogString | 59 | $a0 = address of null-terminated string that is an information-type message to user $a1 = address of null-terminated string to display after the first string | N/A |
# Sample MIPS program that writes to a new file. # by Kenneth Vollmar and Pete Sanderson .data fout: .asciiz "testout.txt" # filename for output buffer: .asciiz "The quick brown fox jumps over the lazy dog." .text ############################################################### # Open (for writing) a file that does not exist li $v0, 13 # system call for open file la $a0, fout # output file name li $a1, 1 # Open for writing (flags are 0: read, 1: write) li $a2, 0 # mode is ignored syscall # open a file (file descriptor returned in $v0) move $s6, $v0 # save the file descriptor ############################################################### # Write to file just opened li $v0, 15 # system call for write to file move $a0, $s6 # file descriptor la $a1, buffer # address of buffer from which to write li $a2, 44 # hardcoded buffer length syscall # write to file ############################################################### # Close the file li $v0, 16 # system call for close file move $a0, $s6 # file descriptor to close syscall # close file ###############################################################
Service 31 will generate the tone then immediately return. Service 33 will generate the tone then sleep for the tone's duration before returning. Thus it essentially combines services 31 and 32.
MIDI system services were developed by Otterbein student Tony Brock in July 2007.
This service requires four parameters as follows:
pitch ($a0)
|
||||||||||||||||||||||||||||||||
duration in milliseconds ($a1) |
||||||||||||||||||||||||||||||||
instrument ($a2)
|
||||||||||||||||||||||||||||||||
volume ($a3) |